
SCFE: Project Report

Matthieu Stombellini

Mathieu Rivier

François Soulier

Rakhmatullo Rashidov

1

Contents

1 Introduction 4

1.1 Technical terms used in this document 4

1.2 General description of the project 6

2 Book of Specifications follow-up 10

3 Evolution of the project 13

3.1 Before the first defense . 14

3.2 Between the first and second defense 22

3.3 Between the second and final defenses 31

4 Final results 39

4.1 A library: Viu . 39

4.2 An application: SCFE . 40

4.3 A website: salamanders.dev . 42

5 Overall opinion 44

5.1 The good . 44

5.2 The bad . 44

5.3 Final thoughts . 45

2

6 Appendix 46

3

1 Introduction

This is the final report for our second semester project: SCFE (Salamanders’

Console File Explorer). It provides details on the original idea, the entire

process of making the project, as well as a description of the end result.

1.1 Technical terms used in this document

This document might be read by people who are not accustomed to terms

related to software engineering. Here is a short list of understandable definitions

for the words we will use throughout this document:

• Library: a set of functions, methods and other resources created by

developers for other developers to use

• Framework: a library with a much more consistent and complete base,

often used as a scaffold for an entire application

• Implementation: a way to code definitions of functions. For example, if

definitions were the abstract of a book, the implementation would be the

actual content of the book.

• .NET: a set of frameworks, languages and related tools by Microsoft for

creating applications

• .NET Framework: the oldest implementation of the .NET standard, which

only runs on Windows

• Mono: a third-party project that aims to make .NET Framework available

on non-Windows machines

• .NET Core: a relatively recent implementation of the .NET standard that

is fully cross-platform and much faster than .NET Framework

• C#: a programming language made for .NET. Other languages created for

the .NET technologies include F# or VB.NET

4

• UI and GUI: respectively User Interface and Graphical User Interface

5

1.2 General description of the project

The goal of SCFE is to provide a file explorer that is easy to use for everyone,

from beginners to more advanced users.

The idea was born out of a collection of problems from both sides of the

usual way of manipulating files: on the one hand, graphical file explorers (like

Finder on Mac OS or the File Explorer on Windows) are very clear, provide

a lot of information, but are fairly slow to use since they require to use the

mouse, and can also be a bit limited when it comes to having more advanced

functionalities. In short, it is a great option for beginners and people who

like to be in a fairly painless environment. On the other hand, consoles and

terminals are very popular options and, although they are not file explorers per

se, they are still used as such. They contain all of the different features of file

explorers and much more, while also being extremely useful for productivity,

the next action only being a few key presses away. It is a great option for

power-users who love to get things done fast and do not mind having a quite

steep learning curve, but is a terrible option for beginners, who have to learn a

lot of new commands and have to deal with a certain lack of clarity in most

places, where you have to search on the Internet to understand how to do

something which you could do in only a few clicks on a regular file explorer.

We decided to go ahead and create a tool that would provide the best of

both worlds: a tool that is easy to use yet allows you to get things done very

quickly, is easy to learn, and always has your back in case you forgot how to

do something. It is also fairly intuitive and does not require much knowledge

to be able to access all of its powerful features.

All in all, we wanted to create a piece of software that was primarily useful,

something that we wanted to use ourselves. Because we find it useful for

ourselves, we believe others will find it useful as well.

6

To increase this “usefulness factor”, one of our goals was to make SCFE

cross-platform, meaning that it could be used on any platform: Windows, Mac

OS and Linux. This was a major constraint and caused some issues during the

realization of the project.

These are the core values that we followed when creating SCFE, and the

end result respects them as much as possible.

We decided to build SCFE as a console application for multiple reasons:

• It made cross-platform compatibility easier and, overall, consoles are

available on any computer, meaning that we had almost no dependencies

other than the core framework

• It gave us almost unlimited flexibility

• It was much easier to work with compared to full-blown graphical inter-

faces, and generally provides a smoother and faster experience, due to

how bare-bones a console is

• It provides better integration for users used to the console environment.

For others, it can still be opened with the app icon.

The very core of SCFE is its modal architecture. There are three main

modes of operation for the application, which we developed and expanded

upon throughout the project. The modes themselves are described in the Final

Results section as well as in the Book of Specifications.

1.2.1 Features

Here are some features which we wanted to implement:

• Opening files based on the system’s default application (e.g. opening

.docx files with Word)

7

• Compatibility with basic file operations (e.g. renaming, deleting)

• Multi-file selection support and copying and moving multiple files at once

• Support for directly going to a specific folder

• Cross-platform compatibility for Windows, Mac OS and Linux

• Compatibility with console commands

• Compatibility with Git

• Multiple modes system: NAV mode for navigation, SEA mode for search,

COM mode for entering console commands

• Easy to use, intuitive shortcuts

• Simple yet complete documentation

• Overall smoothness with as little hiccups as possible

1.2.2 Technical details

SCFE is based on the .NET Core framework and is written in the C# program-

ming language. We chose the former for its great cross-platform compatibility,

and the latter because it was the closest to other languages we had experience

with.

It also uses additional libraries which are listed below:

• JetBrains.Annotations, a library that gave us hints while developing

and allowed for better error detection. It is only used while developing

and has no impact for the end-user.

• MoreLINQ, a library which provides more shortcuts for dealing with data

collections in C#. It made it particularly easy to code requests like “Get

me the maximum value of this sequence”, which were usually reduced to

a single line of code thanks to this library.

• LibGit2Sharp, a library which we used for providing integration with the

Git version control system (VCS) tool. It is the de facto official library

8

for dealing with Git repository under the .NET Core framework.

It was coded using the Rider IDE, and tested under Windows and Mac OS

as well as Linux through the WSL system on Windows.

For distributing the application, we chose to have different solutions avail-

able:

• An installer for Windows, with the .NET Core 3 framework included

• A full version for Mac OS X and Linux with the .NET Core 3 framework

included

• A light version for Windows that only includes the barebones .dll

files and an .exe for launching the application. This version requires

the correct version on the .NET Core framework to be installed on the

machine.

9

2 Book of Specifications follow-up

This section will describe the exact changes and tweaks compared to the book

of specifications.

We have respected the book of specifications as much as we could throughout

the entire project. Our priorities when designing and coding the application

stayed the same, and we implemented all of the features we wanted to have.

We were not sure of which library to use for showing the user interface,

which is why we decided to create our own, based on the simple yet reliable

Console API provided by .NET Core. The project being written in C#, we

original went for .NET Framework on Windows and Mono on other platforms,

but the amount of cross-platform compatibility issues, especially for detecting

inputs, led us to prefer .NET Core for the task.

The library we created, which we named Viu, is detailed in later sections of

the document.

Additionally, two other libraries are actively used: LibGit2Sharp, which pro-

vides easy way to interact with Git repositories, and JetBrains.Annotations,

which was mostly used for internal quality assurance, as it allowed our editors

to warn us when writing potentially crash-prone code.

While nothing extreme changed, in order to maximize user productivity, we

had to make a few changes on some of the details.

• The functionality for going down or up fast in files (through the Shift

key) was changed: instead of going 10 by 10, it now acts as a “page

up”/“page down” modifier, moving the selection cursor at the bottom of

the screen, focusing the first element that was not visible (or just to the

last element).

10

• We announced that the COM mode would allow to change the current

directory. We found that this would be too complex to implement and

a bit too long: we created a dedicated shortcut instead for the “go to

folder” functionality, which allows the user to go to any folder they wish.

It also takes less time: with the COM mode: you have to press Ctrl+Enter

to enter the mode, type “cd” then space, then type your path, for a

total of 5 additional key strokes beside the path itself. With the shortcut

we created (G or Ctrl+G), this number is reduced to either 1 or 2 key

strokes. It is more efficient and more reliable as it does not depend on

any underlying shell, hence making it a better solution than what we

planned in the book of specifications.

• Selecting files was planned to be with the S/Ctrl+S key. We decided to

also add the Space key for selection, since it was a big, easy to reach key

that would have otherwise been unused

• We originally planned to completely block the screen when big files

or folders were being moved or copied. This idea was very simple to

implement, but we decided to go for a more complex but more efficient

solution: the operation is handled on a separate thread, which then sends

back information to our user interface thread to notify the user that

things are happening in the background.

• We specified that we wanted to add color schemes to the application, but

we did not say in the Book of Specifications how we were going to switch

between them. Since we only have two color schemes at present (the

regular one which differentiates folders, files, hidden folders and hidden

files and the one for Git, explained later on in this report), we decided to

simply automatically switch between them. Hence, the Git color scheme

is used when in a Git repository and the regular one is used everywhere

else.

11

• Finally, while we respected most of the key shortcuts we announced, we

modified some of them: e.g. instead of Ctrl+T to change the file sorting

method and Ctrl+O to toggle between increasing order and decreasing

order, we are usin Shift+S for the former and Shift+Q for the latter.

Moreover, while we did implement E and Ctrl+E as the shortcuts to

switch between modes, we decided to also add M and Ctrl+M for the

same purpose, the reasoning behind it being that the M key is close to

the HJKL keys which can be used in SCFE to navigate between files.

12

3 Evolution of the project

This section will go over the development progress of the application. It will

be presented by “step” (e.g. progress before the first presentation, between

the first and the second presentation. . .), then detailed for each task. As a

reminder, here are the tasks for our project and the progression we originally

planned in the book of specifications.

Task Presentation 1 Presentation 2 Final Presentation

Core UI 70% 90% 100%

Navigation modes 20% 70% 100%

File I/O 30% 70% 100%

User input 40% 50% 100%

Tool & OS integration 0% 30% 100%

Website 0% 50% 100%

Documentation 20% 50% 100%

• Core UI corresponds to low-level UI work, basic components and the

overall development of the Viu library which SCFE is based on.

• Navigation modes corresponds to the implementation of the various modes

that can be used to navigate through the app

• File I/O corresponds to the implementation of operations on files

• User input corresponds to the handling and routing of key presses from

the user

• Tool & OS integration corresponds to the interoperability with existing

tools and systems

• Website corresponds to the development of the website

• Documentation corresponds to the writing of the documentation for our

application

13

3.1 Before the first defense

The goal of this time period was to get everyone accustomed to the various

tools they would have to interact with over the course of the next few months,

as well as creating the various bases that we needed early: the Viu library and

the files system we wanted to have in place were by far the most important

steps.

3.1.1 Core UI

In order to actually build a console application, we needed to have something

that could provide an easy way to display components, as well as handling

inputs exactly as we wanted. Unfortunately, almost all of the C# libraries we

could find lacked something crucial: it was often flexibility or cross-platform

compatibility issues which made libraries unusable in our project.

As a reminder, cross-platform compatibility was one of our priorities with

this project. Originally, two out of the four team members were Mac users,

but another member also replaced his Windows machine with a Macbook.

With 75% of the team actively using the Mac OS system, it was obvious that

cross-platform compatibility simply had to be there.

For the examples we mentioned in our book of specifications:

• The gui.cs library, while perfectly functional, was also extremely unclear,

and not flexible enough. We also had doubts about its cross-platform

capabilities.

• The CursesSharp library was just too low-level to be efficiently used, and

also added numerous concerns over the portability and cross-platform

capabilities of our code, the library requiring very specific bindings to

14

system libraries which differed depending on the platform (UNIX or

Windows).

This is why we decided to make our own library, based solely on the Console

API available in .NET. It is a simple, straight-forward and (mostly) painless set

of functionalities that were tried and tested. The only downside was that it

was a bit slow compared to other methods which would call system libraries

directly.

This sub-project of SCFE is one of its most important components: in order

to match the flexibility and performance requirements we had in the Book of

Specifications, a lot of work had to be done to make it as smooth as possible.

The library was given a name, Viu, and was completely separated from the

code of the application itself. The idea was that SCFE depended on Viu, not

the other way around. While this separation might be seen as a step away from

the original goal of the project, it is very much the opposite: the way in which

we built Viu makes implementation of more high-level features of SCFE way

easier.

The Viu library is heavily inspired by the Swing toolkit in Java: the validate-

then-print (i.e. plan where everything is, and show them after everything is

placed) workflow, component hierarchy and layout strategies resemble Swing,

but no code has been taken from it, and, when actually creating interfaces with

Viu, only some of the functions share characteristics with the Java system.

The main ideas developed throughout this first period were the creation

of visual components (labels, text fields, tables, buttons. . .) as well as the

implementation of various layout strategies. All of this was made harder by

the fact that the interface always has a varying size, and layout strategies had

to be flexible enough such that we would never have to touch low-level layout

code and manipulating position coordinates directly when building SCFE on

15

top of Viu.

Thanks to this and some light multithreading to catch when the window is

resized, components dynamically resize themselves as the space around them

changes.

Viu includes multiple “layout strategies”, allowing us to have components

shown exactly as we want them to be. All strategies are able to smartly place

components in them, always ensuring that they perfectly fit in, dynamically

wrapping their components if necessary. The strategies illustrated in figure 1

are:

• The Border Strategy, laying out 4 components at each border and one in

the middle

• The Line Strategy, organizing components into a horizontal or vertical

line

• The Flow Strategy, putting components one after the other, wrapping

them like a text if necessary, although components are of course not

restricted to text only and can be any Viu component.

The most useful components were created, including simple texts, text fields

(which listen to user input), buttons and tables among others. As with layout

strategies, they can all dynamically resize themselves. Tables can even resize

each column individually with different widths for their content (provided that

it has different sizes at its disposal) in order to either grow or shrink.

For extra flexibility, and if we wish to step away from the basic Console

API for something that allows us to have a more fine-grained control over the

output, Viu comes with its own abstraction layer above any console related code.

Components never call the Console API directly, only calling our abstraction

layer, for which the concrete implementation is given by a simple pass-through

16

to the basic Console API.

Viu components were built by Matthieu, who had experience with the Swing

system (hence the resemblance), for the code that lays component out, the

general appearance of components and the overall hierarchy of the Viu system.

The user input side of Viu is described in its own task.

3.1.2 Navigation modes

We built Viu with very few shortcuts available right out of the box. We only

added the essential obvious ones (e.g. arrow and enter keys). A few additional

shortcuts were added, making use of the Input Map and Action Map systems

described in the User Input section. For the Action Map, most of the work

done was hooking up a few shortcuts to action names in the NAV mode, as

well as preparing the table used in the prototype to receive constantly changing

input bindings. This was not fully implemented as it was unnecessary at this

stage, but has proved itself to be a fairly thorough test for the input system,

to see how flexible it would be.

The existing shortcuts were mapped to their corresponding action name, in

a dictionary, ready to be implemented into the main application for when it

would be out of the simple prototype state. This task was realized by François.

3.1.3 File I/O

While file input and output is an essential part of SCFE, it was far from being

a priority for the first period. We planned to primarily focus on the basis of

what has become Viu, making everything else later.

As such, François coded an object-oriented representation of the file system

entirely based on the various classes provided by .NET. Unfortunately, these

17

were either only using static methods and strings, or did not have enough

features to satisfy our needs. This meant that instead of code that would look

rather explicit like myFile.GetName(), we would have much less clear code like

Path.GetName(myPath). Moreover, the errors sent by the .NET classes were

either non-explicit or unpredictable.

Having our own implementation also meant that we were able to copy and

paste files or even entire folders using a simple function in the file representa-

tion. (e.g. myFolder.CopyTo(somewhereElse)). This was a feature that was

surprisingly absent from basic .NET classes.

In addition, the methods implemented in this task such as Copy or Move use

the System.IO classes in such a way that the File class from SCFE can represent

either a file or a folder. That specific property was particularly difficult to

handle in the implementation, because each and every case had to be taken

into account, and thus imply a need for recognizing the kind of file (folder or

file) that was being dealt with. .NET has two specific classes for handling either

files or folders, making it impossible to just say “copy this thing to there”. We

would have to say “if the thing is a folder, copy it over there, if it is a file,

copy it over there”, which would be inconvenient seeing how file operations are

essential to our application.

Our implementation thus merges System.IO.File and System.IO.Directory

functions, with some added bonuses, like directly determining the folder in

which a file is, or other handy shortcuts.

It is important to note that the functionalities of the File class were not

used to their full extent at this stage: they were only used to display the content

of files. We intended to use what was coded more extensively for the second

presentation.

François was responsible for the entirety of the task, with outside help from

18

Matthieu for fixing a few bugs and properly using .NET APIs, since it required

a deep dive into the documentation provided by Microsoft to handle each and

every case properly.

3.1.4 User input

The main goal of this task for the first period was to provide interactivity for

Viu: reacting to key inputs and managing focus states of all components.

A focus system was added, which allows the user to navigate between the

various elements of the interface and throughout the component hierarchy using

arrow keys (or other custom key bindings). This was done through smart use

of C# interfaces on all components, which can declare the fact that they can

be focused and handle key presses by simply implementing an interface. The

focus system can be compared to the logic behind normal applications which

allows them to determine which component to select next when pressing Tab

or Shit+Tab.

To create this focus system, we simply extended layout strategies to also

include logic that tells which component should be the next one to be focused

when going left, right, up or down.

Another aspect of the user input task was the InputMap/ActionMap system.

Once again inspired by the Swing system from the Java language, this allows

us to separate shortcuts from actions. The idea is that InputMaps provide a

binding between key presses and action names, while ActionMaps provide a

binding between the action names and the actual action. This system provides

a fantastic “buffer” layer between what the user presses and what the program

does. This is the exact system that was used for the Navigation Modes task for

the second period to switch back and forth between different shortcuts without

fundamentally changing the actual actions themselves.

19

A diagram describing the process can be found at figure 2.

Finally, a few components which were entirely based on user interaction

were added, namely text fields and buttons. These were entirely custom built

by handling individual key presses, since we were not really able to rely on the

“regular” way of reading text from the console. Text fields provide a sizeable

implementation of shortcuts which are common in text editors in order to

simply make the text field component easier to use. Examples of such key

presses include the Delete key or Ctrl+Arrow shortcuts (to jump between words

instead of just between letters/symbols).

Heavy testing for this part was crucial to make sure that the input system

was robust.

Mathieu was responsible for most of the task, implementing the input

system (under Matthieu’s supervision in order to make it fit nicely into the

existing component hierarchy) with ActionMap and InputMaps as well as the

focus system (once again with help from Matthieu), and Rakhmatullo was in

charge of the “input reaction” part of a few components, including buttons

(e.g. performing a predetermined action when pressing a button).

3.1.5 Tool & OS integration

Nothing was done for this task specifically, as was planned in the book of

specifications. It represented a more advanced part of the application, and

was far beyond the simple “laying the basis down” step which we were in the

middle of for the first period.

20

3.1.6 Website

Once again, not much had been done for the website at that time, the goal

mostly being to prepare a basis for every other task. Mathieu did gather some

information and made some mockups in order to gain some time for the second

period.

3.1.7 Documentation

Most of the work that was done for this part was simply collecting intentions

from the book of specifications to make them into a user-readable format. This

is done in Markdown at the moment, but will be published onto the website

later on.

Rakhmatullo never touched the Markdown format before, so he looked into

it and at how to make it work for us.

3.1.8 Overall state

At the end of the first period, we had achieved quite a lot: we had a solid

basis in the form of Viu as well as prototypes which showcased the various

components we implemented. The goal was to have a something ready for a

smooth transition into full functionality.

A prototype of the application was produced and is in figure 3. While it did

not “do” anything, it was possible to go up and down in the interface and select

files, but that was it. It served more as a demonstration of the capabilities of

the Viu library we created than an actual product.

21

3.2 Between the first and second defense

Now that we had a basis for the application, including a home-made library for

showing user interfaces in the console, it was time to create the real application

on top of that.

3.2.1 Core UI

While building the main application, some unexpected bugs with the code we

use to build graphical user interfaces in the console were encountered. The

goal for this period was to, logically, fix them, as well as adding functionality

here and there. Some components got “smarter” with a logic that properly

handles being “squished”. The components would behave incorrectly if they

did not have enough space around them: each component normally expects

and requests a certain amount of space to be attributed. If the console was

too small, it was impossible for the component to print itself properly, and a

number of issues could happen: either the text would “overflow” to the next

line, or the entire application would crash with a terrifying (but admittedly

pretty stupid) out-of-bounds error. This was fixed and most components now

support being “squished” and can show an ellipsis (. . .) at a configurable spot:

strings can be cut from the left (. . . like this), from the right (like this. . .) or

from the center (like. . . this), depending and what makes most sense. Another

component that was improved was the table component (which is used as the

file list in SCFE): it is now possible to scroll through the list if there is not

enough space to display it.

An additional improvement done in this period was the introduction of

proper multithreading to the UI. In previous tests, all of the actions done on

the interface were done from multiple processes at the same time. This kind of

concurrency could be extremely problematic in the future and led to crashes

22

on Linux and Mac OS. In this period, all components were now forced to be

printed on a single thread (which we will call the graphics thread), meaning

that operations related to showing and refreshing the user interface were all

done in a single process, eliminating a lot of bugs we had at the same time.

The way it was done was to simply limit the access to the abstraction layer

that was developped in the first period: components needed access to the layer

to actually print things in the console, and we simply restricted the availability

of said layer to operations done in the graphics thread.

The interface itself was entirely built using Viu: an excellent stress-test for

the basis which grew stronger and more stable as a result. It was part of this

task, but mostly consisted in putting everything together like Lego bricks.

The work on this task was entirely done by Matthieu.

3.2.2 Navigation modes

Two of the three planned modes were implemented: the NAVigation mode as

well as the SEArch mode.

The NAV mode, which is more like usual graphical file explorers, consists

in using the arrow keys and HJKL keys to move around the interface. Many

shortcuts were implemented to perform actions on the various files. Some

examples of fully implemented and functional operations:

• Pressing R to rename a file

• Pressing N to create a new file

• Pressing Shift+N to create a new folder

• Pressing the Delete key to delete a file

• Pressing C to copy a file, X to cut a file and V to paste a file

23

In order to make the application more fool-proof, destructive operations

are either not performed (e.g. pasting where a file already exists with the same

name), showing an error, or ask for confirmation. This way, deletion requires

the user to type “yes” and press Enter in the text box to ensure that they do

want to delete the file(s) they selected.

The SEA mode also has these shortcuts, although they require using the

Control key to access them (e.g. while you can simply press R to rename a

file in NAV mode, you have to press Ctrl+R in SEA mode). This is because the

regular letter keys do not redirect to the usually expected actions: they instead

jump the focus to the text box at the bottom of the interface, and allow the

user to enter letters for searching specific files. The user can then:

• Press Enter to either directly open the only file or folder that was found

with this name

• If multiple files match the search keywords, pressing Enter will re-focus

the file area instead and let the user choose which file they actually want.

• Pressing Escape cancels the search, empties the textbox and returns to

the file list.

The SEA mode corresponds more to what console users expect: quick access

to files by using the file names. It should be noted that the search performed is

not recursive: only files in the current folder are searched. This is because the

whole point of the SEA mode is to navigate through files as fast as possible by

entering their name, and searching throughout the entire tree of files would be

extremely tedious and slow down the application as a whole. In order to avoid

this (and also avoid confusion from random files buried deep inside folders

surfacing in a simple search), entering text while in SEA mode only searches in

the current directory. In this way, it is better to think of the SEA mode as a

“file view filter” rather than an actual heavy search mode.

24

Almost all of the actions described above are supported for multiple files:

pressing Space or S allows the user to select files, and most actions will act

accordingly (e.g. copying multiple files to the clipboard).

All of this was implemented using the Input map (turning keys into action

names) and Action map (turning action names into actual handlers which

perform the action) system which is described in the part about the progress

done before the first defense. We now had a very flexible system which is able

to hot-swap key bindings while leaving the actual actions untouched.

Moreover, actions such as pasting or deleting can take a lot of time. In order

to properly support these, we used multithreading to perform the operation on

one thread while allowing the other threads to handle the user’s inputs freely.

The thread in which the deletion happens then tells the graphical thread to

either print a message, or reprint the entire folder if the content changed.

As a side note, an interesting thing to note is that on the dev team we each

have our own preferences on how to navigate in SCFE: some prefer the SEA

mode for quick access to most files while others prefer the NAV mode for the

ease of use and quick access to actions!

This task was done by both Matthieu and François. Since Matthieu was

mostly responsible for the Core UI task and François for the File I/O task,

Matthieu took care of linking the navigation mode to the interface components

as well as the most complex elements like multithreading, while François took

care of linking the various actions to their implementation. All actions have two

“branches”: showing the user that some action is happening or has happened,

and actually doing the action on the files. Matthieu did the former, while

François took care of the latter.

25

3.2.3 File I/O

In order to have a more complete display for the various properties of each files,

the current implementation had to be able to get more information from the

files, e.g. access to the last modification date.

The system also needed to sort and filter files for a few reasons:

• The order of the files returned by the .NET APIs is not stable nor practical,

and can be quite chaotic for large folders.

• ALL files are shown by default, meaning that system folders that are not

even readable by anyone but the system were visible, which ended up

adding more clutter to the UI and causing more confusion as to which

files were accessible and useful.

We, therefore, ended up with a pretty flexible system of re-routable filters

and “smart sorting”.

• The base filter for showing files depends on a few variables, including

whether hidden files should be shown or not, or whether we are in SEA

mode and need to apply the search terms or not. Detecting hidden files

is done in both the Windows and Linux/Mac OS way at the same time:

the file can have the “Hidden” attribute (like on Windows) or can start

with a dot (like on Linux and Mac OS).

• The sorting conditions we use take into account a few attributes: first

whether the file is a folder or an actual file, and then the names of the

files. This is not customizable at present, but we might allow the user

to also choose whether they want to sort by size, modification date, or

other.

26

Color schemes were also implemented. They simply consist in differentiating

files (in white) from folders (in green) and hidden files (darker shades) from

regular files (regular shades).

As a side feature, the File implementation got a new system for creating

relative representations of file paths, which is explained in the “Tool & OS

Integration” part.

This task was done by François.

3.2.4 User Input

The text box at the bottom of SCFE is the basic way for the user to interact

with the system. It is based on the same text box component as before, and

most of the work done this time was correctly focusing and defocusing it in

order to avoid having the user wrongly inputting text in it.

When the text box receives an “enter” key press or receives a new letter, it

performs actions that depend on the state of the application: if an action is in

progress (e.g. the user is entering the new name for a file because he triggered

the “rename” sequence by pressing R), then the text box redirects the input

to the current action handler, which is different for every kind of action. If no

actions are in progress, then the text box either does nothing (in NAV mode)

or filters the file view (in SEA mode) just like any search would. In NAV mode,

the text box is usually not accessible, and if it is, it has no real action (except

when actions like renaming are in progress of course).

Moreover, the “input system” (i.e. input and action maps) was hooked to

the table in the application with this task, allowing the user to actually do

things with his keyboard. However, actually defining the different bindings was

not the goal of this task, as that was a job for the Navigation Modes task.

27

This task was done by Mathieu.

3.2.5 Tool & OS integration

In order to reduce the amount of clutter in the interface and avoid extremely

long paths, in some cases, the path might be “relativized”. The only currently

implemented instance of this is when the user is in a folder that is a sub-

folder of their home directory. For example: On Windows, if my user name is

“MyName”, instead of “C:/Users/MyName/MyFolder”, SCFE displays “~/My-

Folder”, which is more helpful (and uses a well-known standard of replacing

the home folder of the user by ~). The folder’s name is deduced from what the

OS publicizes as the home directory, so it will work for any username under

operating systems which are correctly supported by .NET Core.

Because a file explorer that cannot open files is quite useless, SCFE provides

a lightweight integration with the underlying system through being able to

open files. This uses the default action from the OS and opens the same app

that would open if the user double clicks on the file in the system’s file explorer.

This was done by Rakhmatullo.

3.2.6 Website

At this point, while we had some ideas for the website, Mathieu was in charge

of the creation and maintenance of the website. The website is available at the

following address:

https://salamanders.dev/

At this point, it only had basic information on the project: what it is, who

the members of the team are, and some placeholders where needed. It is fully

28

https://salamanders.dev

responsive and works on mobile. At this point, it was ready to welcome more

content.

Its design is close to the one we have used throughout the documents and

the presentations: black and yellow accents with logos for both SCFE and Viu.

Viu did not originally have a logo, but since it was separated in the code base

from SCFE, we figured that it could be considered to be another product from

our team. The Viu logo was created for this occasion.

The website was done in raw (but clean) HTML and CSS using the Bootstrap

toolkit and is hosted on OVH. The HTTPS certificate was obtained through

OVH as well. This gives us total control over the website’s content, although

the creation and upload can be a little tedious at times.

The documentation is also hosted on the website and well integrated with

the current theme. A Downloads page was also present but did not actually

provide the downloads at the time: these were added for the last defense.

The work on the website as well as the theming for the documentation were

entirely done by Mathieu.

3.2.7 Documentation

Basic usage of the application were documented and included information on

regular use of the app in the most basic workflows.

The documentation clearly explains the use of the SEA and NAV modes,

ensuring to explain when and where to do something in a clear manner so as

not to completely lose newcomers in useless details. It also provides a helpful

load of key bindings, which are also available from within the application.

The application itself also has a healthy amount of information: the user

29

can open special “option panels” which displays all of the options available for

a file, along with the key bindings that would allow one to perform the action.

This help is dynamically created, so that if we want to have customizable key

bindings in the future, the shortcuts shown in the application reflect the chosen

key bindings – but as handy as it is, the help remains minimal, both because it

should not interrupt the workflow and the console is a poor environment when

it comes to reading text, mostly due to the limited amount of space and lack

of proper font decorations.

The documentation that is outside of the application is written in Markdown

and is available on the website under the Documentation tab. It is, of course,

converted into HTML before being published, and some manual adjustments

to the HTML code had to be made. Online documentation was done by

Rakhmatullo, while in-app documentation and help was done by Matthieu.

The theming of the documentation on the website was done by Mathieu.

3.2.8 Overall state

At this point, the application truly existed with almost all of its features. Thanks

to our solid basis, we were able to accumulate all of the various simple features

we wanted at a fairly fast pace. Three screenshots are available in figures 4, 5

and 6, showing respectively the application working on Windows, on Windows

while in the search mode and on Mac OS. Cross-platform compatibility, being

one of our priorities, worked, but had a few bugs here and there which were

fixed in the period that followed.

Moreover, the websites and documentation had started to actually take

shape and came to existence. They were light, as they were not our priority

for this period, but still worked fine and did their job.

30

3.3 Between the second and final defenses

A lot of work had been done between the first and final defense: so much so

that there was not much left to do for the final defense, apart from the most

advanced features, and the usual bug fixing.

3.3.1 Core UI

Most of the work done for this task in this period was refactoring and bug

fixing of what was happening behind the scenes. A few additional internal

functionalities were added, mostly to help with multithreading and properly

going back and forth between the graphics process and other processes which

took care of file management. An example of such functionalities is an all-in-one

“RequestSync” function, which is called in file management processes and is

responsible for blocking the file process, asking the user for an input, waiting

for said input, and passing back said input and freeing the previously blocked

process, unless the user canceled the action (e.g. by pressing escape).

Moreover, some important bugs were fixed for Viu: due to bugs in .NET

Core 2.2, which is the framework we use, we were forced to clear and reprint

the entire user interface every single time the user provided input through the

keyboard. We therefore made Viu compatible with both .NET Core 3 and the

2.2 version. We could not just drop support for the 2.2 version, as the version

3 is only available as a pre-release and should be released towards the end of

2019.

Another feature that was added was the ability to change the order of

columns through a configuration file. Said configuration file, located at

~/.SCFE/columns.txt, takes the form of the name of the columns separated

by commas. The default layout is name,git,size,date. While it is a simple

31

configuration file format, we understand that it might be a little tricky to

do for beginners – but we decided against creating a full blown configuration

screen to our application due to both time constraints and how overkill such a

functionality would be for simple reordering of columns. We do not have many

columns available in SCFE: the addition of this reordering mechanism is only

a commodity and not a standout feature of the program.

Matthieu was responsible for the entirety of this task.

3.3.2 Navigation modes

Navigation modes received some attention in this part, but not much. It was

mostly about adding a few additional shortcuts and providing links for the Git

integration. For example, a “Select All” and a “Toggle Selection” functions

were added.

Additionally, the user is now able to change the sorting method for the files

through two shortcuts: Shift+S cycles through the different sorting methods

available (name, then by file extension, then by size, then by date, then back

to name), and Shift+Q reverses the order. The order reversal does not just

“flip the entire order”: it does so more intelligently. For example, in the name

sorting (which is the default), folders go first from A to Z, then files go from

A to Z. In the reversed name sorting, folders are still first but go from Z to A

and only then do files go from Z to A. This way, folders still remain at the top,

which would not be the case if we just reversed the original order.

François and Matthieu cooperated on this task. Matthieu linked the actual

shortcuts to the interface while François made the modifications required to

the sorting system we already had in place. These modifications are detailed

in the next section.

32

3.3.3 File I/O

The file I/O task saw a new addition which we did not actually plan on the

Book of Specifications because we were not sure of its feasibility. One of the

major flaws of our application was the lack of a “hot reload” feature: if the user

(or another program) created, removed or modified a file, it was impossible

for SCFE to detect it and refresh itself. The user had to manually press the

Shift+R shortcut, which triggers a reload of the folder.

We added a new functionality in this period: auto-refresh. Thanks to a

feature of .NET called file-system watchers, we are able to catch any change

in the folder that is currently opened in SCFE. If a change is detected, we

automatically reload the user interface to show the modification, still focusing

the file that was previously focused. This process is very fast and makes

SCFE extremely useful in many more situation. It also saves two key presses

from the user, which is always a nice addition since the application focuses on

productivity.

The File I/O got some modifications here and there to support the addition

of new sorting options which the user can cycle through, as described in the

Navigation modes part of this period.

The original sorting method was also changed to support natural sorting.

The original, classic way of sorting names is through a purely alphabetical

point of view. In this way, the names “Hello1”, “Hello2” and “Hello10” would

be sorted as “Hello1”, “Hello10” and “Hello2”, which is not logical. The logical

way of sorting the strings is called “natural sort” and replaces the original

sort method we had in place. This way, the sorting is less confusing and more

enjoyable for the user, as we believe it is much cleaner.

This task was done by François.

33

3.3.4 User input

Not much had to be done in this part. The coding of the COM mode, which we

will detail later on in this document, is based on the exact same mechanism

that allowed us to have users provide details for operations like renaming files.

We re-used this system to allow the user to enter a command, and then route

that command accordingly to what was coded in the Tool & OS Integration

part.

An additional ability was added to the text field component, which we use in

SCFE as the text box that is available at all times at the bottom of the screen.

It is now able to hide its input in case of the user entering sensitive information:

this was added in order to allow the integration with Git to request a password

from the user in such a way that the password is not displayed in clear on the

screen.

Some bugs we encountered with key presses not being registered were fixed

by simply upgrading our .NET Core version to the pre-releases of version 3.

This task was done by Mathieu.

3.3.5 Tool & OS Integration

At this stage in the project, tool and OS integration were the priority. We had

a fairly basic file explorer, now we needed powerful features for advanced users.

However, because the goal of our application is to be a file explorer, we

decided against having heavy integration with every tool. The idea is that some

lightweight integration for the most used tool would be more than enough, and

users who need to perform more complex actions should use the tool directly

instead of using the tool through SCFE.

34

With this mindset, we set out to add the two features which we would find

most useful: Git integration and a COM mode for executing commands in the

command line.

3.3.5.1 Git integration

Git is a “version control system”: a tool that allows users to manage their

files (usually code) in repositories, version them (i.e. have saved file states),

navigate through the file history easily and reliably, while also being able

to share the files and their modifications history online on sites like GitHub

and GitLab. Git is used at EPITA for submitting code during programming

practical work, and we have been using it since the very beginning of the project

to collaborate on the code. It is the most widely used tool in its category, so

integrating it into SCFE would be an obvious benefit for developers.

Git integration in SCFE is simple yet extremely useful. It is based on

the LibGit2Sharp library, and comes with both the ability to visualize the

repository and actions on it. When in a Git repository, SCFE automatically

loads and caches the repository’s status, and displays the status of each file in

a separate column. This column only appears when in a Git repository and is

automatically hidden everywhere else.

Additionally, a few common actions were added: staging and unstaging

a file (which tells Git that they should be added to the next save), creating

a commit (i.e. creating a save), as well as pushing and pulling (i.e. sending

and receiving saves from a server). These are supported only on a fairly basic

level, and we went the safe route. These operations have different variants that

require extra input from the user, and Git can usually detect conflicts between

files: should any conflict or extra input happen, we simply inform the user that

an error happen, and we stop there. This follows the idea that SCFE users

should not be in SCFE to perform any complicated action.

35

An example of Git integration can be found in figure 7.

There is still another way of launching more complex commands from SCFE,

in the form of the COM mode.

3.3.5.2 COM mode

The COM mode is the third and probably the most straightforward one:

you simply press Ctrl+Enter (or Shift+M), type in the name of the command

you wish to launch just like in a regular terminal, and you then simply press

enter to launch the command. Like any other text input in SCFE, you can just

press Escape to cancel the action.

The command itself is rerouted to an underlying shell, which is PowerShell

on Windows and bash on Mac OS and Linux. If the process writes something

in its output (e.g. to show a message), the message is intercepted and routed

to the interface where all of the messages are usually shown in SCFE.

This system works well and is done in a multithreaded fashion, meaning that

the main interface is not blocked while the command is ran in the background.

It is still fairly basic and does not support processes which require input from

the user, but it is not intended to be a replacement for a full terminal. It can

be useful for small tasks though. For example, we are able to build SCFE

inside SCFE through a single command in COM mode.

An example can be found in figure 8.

Work on both git integration and COM mode was made by Rakhmatullo

with heavy assistance from Matthieu. The rest of the team also helped testing

the new additions, which was crucial since some features like the COM mode

heavily rely on platform-dependent behaviors.

36

3.3.6 Website

Even though the website got some good progress between the first and second

defense, there was still some work to do. Some animations were added and

more theming was done overall for a cleaner look.

The download page also got a few new additions, including a landing page

inspired by the front page of the Atom editor (https://atom.io), as well as more

details on the software like release notes and more.

The work on the website was entirely done by Mathieu.

3.3.7 Documentation

Additional parts of the project were documented. Like in the previous period,

every new feature is displayed in a specific panel that shows all of the available

actions.

The documentation that is on the website also got a few improvements,

mostly documenting new features that appeared here, as well as documenting

more of the features that had not been documented yet although they were

present.

Documentation was done by Rakhmatulo.

3.3.8 Overall state

At this point, the application, website and documentation were fully finished.

The final results are explained in the following section.

The application also received an installer for Windows and for Mac OS, a

light version (that does not include the .NET Core framework and thus requires

37

a separate download) for Windows, and the binaries for Linux. The installer

for Windows was made by Matthieu, the one for Mac OS by Mathieu.

38

4 Final results

In this section, we will go over what was created for our project and the end

results.

4.1 A library: Viu

As we mentioned before, we did not like any of the various options we had for

a us.

Although not the main goal for our application, we did end up creating a

separate library for creating interfaces while in the console. The motivation

behind not simply re-using something that already existed was that the other

libraries did not give us the flexibility we wanted, had problems on non-Windows

platforms, or had miscellaneous quirks that we could not fix easily.

Viu provides a great way to create an application in the console. It is

fully resizable, multi-threaded and has an abstraction layer which allows it to

run on any sort of output. By simply replacing this abstraction layer with

something else, we could theoretically write the user interface to a printer, an

actual graphical interface (although it would still keep its text look), a different

console implementation, or pretty much anything else.

Viu features a powerful input system which we have described in the

evolution of the project. It has greatly helped us in the process of creating the

application itself, providing an easy way to swap between bindings.

39

4.2 An application: SCFE

The SCFE application has grown to be exactly what we had predicted, and

more.

One of the features we were able to add although it was not initially planned

is an auto-refresh system. When adding or modifying files from inside SCFE,

the application originally refreshed itself, ensuring that files that were created

were shown. However, this system did not take into accounts files which might

have been modified from elsewhere, e.g. from another application or command

line utility.

In an attempt to add some extra functionalities, Matthieu looked into

the possibility of using the file system watcher feature of .NET, which was

surprisingly easy to add since we had already implemented multi-threaded

related features. In the end, SCFE supports reloading folders on the fly when

they are modified from somewhere else.

As for all of the features that were planned, they are all there, including

the mode system. SCFE was fully built with this mode system in mind. There

are three modes usable, following a “modal” approach:

• NAV (Navigation) mode, for easily navigating between files. Shortcuts are

easy to reach in this mode, only taking a single keypress. The NAV mode

is built for productivity for folders with a limited amount of files, and for

people who prefer the regular, slower approach of file navigation, where

you can only go up and down between files.

• SEA (Search) mode, for quickly finding a specific file you are looking for.

The shortcuts in this mode are the same as with the navigation mode,

the difference being that the search mode requires the Ctrl key to be held

down for all shortcuts. This is because pressing any key without the Ctrl

40

key will search for files instead of triggering a shortcut. The user can

type the name of a shortcut from anywhere and easily and quickly access

said file. It makes looking for files extremely efficient, and resembles more

what console users would expect.

• COM (Command) mode, for launching more complex commands that one

would normally enter in a terminal. Commands are great for launching

scripts or other processes which are more technical or flexible than what

can usually be done in SCFE.

A few different workflows exist with this model:

• Using only the NAV mode with the Options panel we implemented. This

panel provides access to all of the available actions in a list, and displays

all of their associated shortcuts. It is a great way to get started with

SCFE and allows beginners and those who do not want to learn everything

there is to know about the app to use the application to its full extent.

• Using NAV mode with all of the shortcuts and sometimes switching to

SEA mode to navigate in big folders. The shortcuts in NAV mode are

particularly fast to use since they do not require the Ctrl key to be

pressed. Copy pasting, which is usually a Ctrl+C and Ctrl+V simply

because a key press on C for copying and a key press on V for pasting.

Of course, should the user forget a shortcut, he can open the options

panel to get a reminder. This is the workflow most of the people of the

team use.

• Only using the SEA mode. This makes navigation through folders ex-

tremely fast, but might be more taxing on the hand for launching shortcuts.

Moreover, you have to know the names of your folders by heart in order

to really be efficient. This workflow is the closest to the console way of

navigating through files.

41

The COM mode, not truly being a “navigation” mode but more of an “op-

eration” mode, can still be used in conjunction with all of the other modes

without any issue and in any workflow.

SCFE provides all of the regular operations one would expect from a file

explorer, and more:

• Direct lightweight integration with commands through the COM mode

• Lightweight integration with Git with reduced lag

• Compatible with all platforms with almost no differences in operation

• Auto-refresh on folder modification in other applications

Other file explorers rarely feature all four of these features at the same time,

which makes us very proud of the resulting product.

Another interesting note about SCFE is that, even though it is written in

a framework that is not necessarily known for its speed, it remains fairly fast

and perfectly usable throughout the life of the application, which is especially

important when going through Git repositories. Using Git repositories is a

bit taxing for the system, since the way the Git system works forces us to

reload the entire index of the repository in order to get the latest status of the

different files and showing an accurate representation of file status.

4.3 A website: salamanders.dev

Along with SCFE, the website we created, while simple, still respects what we

consider to be our priorities: something clean that goes straight to the point

but does not lose you in oversimplifications.

The various download links and the documentation are posted to the website,

which features a clean, minimalistic and modern style that still features our

42

graphical theme and font of choice (PT Mono). The downloads are built for all

of the platforms we are targetting, and it includes a Windows installer that

Matthieu built using the Nullsoft Scriptable Install System (NSIS) tool. NSIS

is a tried-and-tested solution that has been around for 19 years and has a great

userbase: almost all of the installers that we have nowadays are built using

NSIS. As a final perk, NSIS is completely free, which prevents us from adding

costs to our project.

The website itself, being hosted through OVH, is fully static, which is an

excellent option as it requires no maintenance, stays flexible, and we do not have

to worry too much about databases or other more complex web components.

Being written in pure HTML, it is a bit heavy to manage, but Mathieu has

had experience with writing pure HTML websites and knows how to properly

manage them.

43

5 Overall opinion

5.1 The good

Overall, we are very happy with what we have managed to produce.

All of what we did was new for members of the group: for example, managing

a team was a first for Matthieu, while Mathieu and François had very little

experience with coding prior to joining EPITA. This gave us new experiences,

which is always a good thing.

The project also allowed us to use tools in a more advanced way: while Git

was only used for simple submissions in our programming course, we used it to

have it integrated inside a different application – and also used it for ourselves

to track the project’s progress.

5.2 The bad

One particular annoyance throughout this project was one of our most important

goals: cross-platform compatibility. While everything worked fine on Windows

machines, the other members of the team had a much tougher time ironing out

bugs. Terminals on non-Windows platforms tend to “catch” a lot of key presses,

rendering some key sequences completely useless. All of the key sequences

that involve pressing the Alt key simply did not work most of the time on

non-Windows platforms. There are no workarounds for this other than diving

to a much more low-level approach to communicating with the terminal for

catching these key strokes, but it would have been way too time consuming for

us.

In the end, the various panels we have in place for selecting actions from

44

a list end up also being a last resort if a key binding fails for some reason on

non-Windows platform. This is a very unpredictable issue since all systems will

catch different key strokes and, when the underlying system is not responsible

for the issue, it is the .NET framework we are using that does not want to

cooperate with us.

On a more human level, Matthieu struggled a lot with delegating tasks to

the rest of the team, since he had more experience with this kind of project.

Coding features was usually faster if he did it by himself rather than letting

others do it and having to explain them.

5.3 Final thoughts

This project was a first for all of us, and we are all very proud of the end result.

We believe that we achieved what we had in mind when we first started, and

that we successfully delivered a product that we want to use ourselves. This

has been an interesting experience which allowed us to manipulate software

development tools outside of the usual programming courses that we have, and

a rather new team experience.

45

6 Appendix

This section contains additional images and screenshots of our application.

Figure 1: Layout strategies for components (Border, Line and Flow strategies)

Figure 2: Illustration of how InputMap and ActionMap work

46

Figure 3: Prototype of the application (First defense)

Figure 4: The application on Windows (Second defense)

47

Figure 5: Using the SEA (search) mode

48

Figure 6: The application running on Mac OS (Second defense)

Figure 7: The final application in a Git repository

49

Figure 8: The final application in COM mode, in a folder with hidden files

50

	Introduction
	Technical terms used in this document
	General description of the project

	Book of Specifications follow-up
	Evolution of the project
	Before the first defense
	Between the first and second defense
	Between the second and final defenses

	Final results
	A library: Viu
	An application: SCFE
	A website: salamanders.dev

	Overall opinion
	The good
	The bad
	Final thoughts

	Appendix

